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ABSTRACT 
 
Marginal Conditional Stochastic Dominance (MCSD) is an extension of the second order stochastic 
dominance that considers the joint nature of return distributions. It is a useful tool for examining marginal 
dominance of one asset to another conditionally to a given market return distribution for all risk-averse 
investors.  MCSD is superior to conventional market models in that it requires no modeling specification 
and is distributional free.  Although the size and value effect of equity portfolio performance has been 
well documented, most of analysis relies on statistical regression description and/or linear factor models.  
This manuscript applies MCSD to re-exanimate the size/value effects for international equity markets.  
The empirical MCSD test reveals that U.S. value stocks outperformed the market and dominated growth 
stocks for the post 1975 period.  However, the phenomenon of value over growth is generally 
insignificant in markets around the world, and it varies with different valuation criteria.    
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I. INTRODUCTION  
 
 Buying stocks with high book to market (B/M) ratios, so-called value stocks, will 

produce returns that outperform the market.  This value strategy has been documented by Chan, 

Hamao, and Lakonishok (1991), DeBondt and Thaler (1985, 1987), Fama and French (1992, 

1996, 1998), Lakonishok, Shleifer and Vishny (1994), and Haugen and Baker (1996).  However, 

despite pervasive evidence of value effects, there remains debate on this issue.  Some argue that 

empirical evidence supporting the value effect may be simply a data snooping bias in that the 

anomalies are sample specific results that are unlikely to be observed out of sample.1  Other 

researchers argue that the higher average returns on small firm value stocks are compensation for 

risk.2   That is, the tendency of value stocks to outperform growth stocks is not an anomaly.  It 

can be viewed as a risk factor, in equilibrium, priced in addition to the traditional CAPM type 

systematic risk.3 

 Recently, debate has also centered on the source of the value-growth effect.  One 

explanation is that investors overreact to performance and assign irrationally low values to 

distress stocks and irrationally high values to growth stocks.  When the overreaction is corrected, 

distressed firms experience high stock returns and growth firms experience low stock returns.4   

In contrast, Fama and French (1993, 1995, 1996, 1998) argue that the value premium is 

compensation for systematic risk.  There is no evidence that average returns vary with firm size 

and B/M in a way that cannot be explained by risk loading, and there is no evidence that 

                                                           
1 See MacKinlay (1995), Knez and Ready (1997) and Loughran (1997). 
2 See Brennan, Chordia, and Subrahmanyam (1998), Chan, Chen and Hsieh (1985), Chan, Karceski and Lakonishok 
(1998), Chen and Zhang (1998), and Dichev (1998). 
3 For example, Fama and French (1993, 1995, 1996, 1997, 1998) have proposed a three-factor model that is able to 
describe stock returns. 
4 Proponents of this view include De Bondt and Thaler (1987), Lakonishok, Shleifer and Vishny (1994), and Daniel 
and Titman (1997, 1998). 
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variation in risk loadings is uncompensated when it is unrelated to size and B/M.5  Therefore, the 

risk model is perhaps the most appropriate approach to explain and/or analyze the value-growth 

effect.   

Since a full description of expected returns with associated risk factors for stock 

portfolios must obviously be model specific, the potential problems of model misspecification or 

invalid modeling assumptions may provide unreliable results.   Specifically, the linearity and 

symmetry of return distributions to permit portfolio separation is necessary for the validity of 

capital asset pricing models.6  Modeling results could thus be misleading, if the return generating 

process of assets is non-linear and/or asymmetrically distributed.  For ranking investment 

alternatives and/or portfolio performance results, Stochastic Dominance (SD) is superior to 

conventional capital asset models such as CAPM and APT in that it derives weak conditions for 

separation based on general probability distributions, is consistent with expected utility 

maximization, and places no restrictions on the class of investor utility functions.7  Importantly, 

it requires no specification about the linearity of the return generating process.  However, 

although SD is a general and powerful tool for rank ordering portfolios based on their risk and 

return trade-off without any asset pricing modeling specification, it involves serious pitfalls in  

portfolio analysis.   Levy (1992) notes that SD performs well in applied economics and finance 

when the decision problem is preference for a single asset or policy.  But in optimal portfolio 

selection, SD performs poorly in that one has to search through all possible combinations of 

                                                           
5 To distinguish the risk model from the overreaction model, one must be able to find variation in size and B/M 
characteristics unrelated to risk loading.  See Davis, Fama and French (1998).   
6 Portfolio separation is important and necessary for providing the equilibrium results of capital asset models.  For 
example, the two-fund separation is necessary for CAPM [ Sharpe (1964)], and the N-fund separation is critical for 
the APT model [Ross (1976)] .  To obtain portfolio separation, either the utility function needs to be restricted [Cass 
and Stiglitz (1970)] or the return distribution is under certain restrictions.  Ross (1978) explicitly demonstrates that 
for all risk averse utility functions, to permit portfolio separation, the return generating process must follow a linear 
structure.  Ross' linear distribution separation is quite general in that it requires no specification about the form of 
utility function and that of the return distribution such as normality and/or elliptical distributions.   
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portfolios to find an efficient one.  In addition, the SD is originally calculated by independently 

comparing the cumulative return distributions of assets without considering the joint nature of 

the assets' return distributions.8  For portfolio performance analysis, however, it is important that 

a measure of performance be insensitive to the relative risk of each portfolio and the strength of 

the market (core portfolio) condition.  Such a measure needs to adjust the portfolio's return by 

the amount of return that is attributable to the relative risk of the local portfolio, given the 

strength of the market (core) portfolio in the period that performance is evaluated.  Conventional 

stochastic dominance rules unfortunately fail to adjust the ordering of assets’ return distributions 

by changes in market conditions, and, consequently, the SD ordering is sensitive to market 

strength. 

Marginal Conditional Stochastic Dominance (MCSD), developed originally by Shalit and 

Yitzhaki (1994), orders assets marginally and conditionally from a given portfolio.9  MCSD 

theory is derived from the concept that, in the asset selection process, all risk-averse investors 

will prefer a particular option to another, given that they hold the rest of the portfolio.   That is, 

investors can improve expected utility by marginally increasing the dominating portfolios at the 

expenses of the dominated ones.  Shalit and Yitzhaki (2003) argue that not only the traditional 

Stochastic Dominance approach does not provide practical results as it involves an infinite 

number of pair-wise comparison of portfolios, but constructing dominating portfolios according 

to SD is bound to fail because one can always find a combination yielding higher expected 

returns.  Therefore, rather than build an optimal portfolio, one could employ MCSD to determine 

whether a given portfolio belongs to the SD efficient set so that it is impossible to find an 

                                                                                                                                                                                           
7 See Hadar and Russell (1969), Hanoch and Levy (1969) and Rothschild and Stiglitz (1970). 
8 For instance, asset A second-degree stochastically dominates asset B if and only if the twice-cumulated density 
function (c.d.f.) of A is not greater than that of B for all levels of returns.  The comparison is stand-along and ignores 
the joint nature between individual assets and the overall market conditions.   
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alternative portfolio that is pair-wise preferred by all risk-averse investors.  That is, instead of 

finding the entire SD efficient set, attention centers on whether a given portfolio belongs to the 

efficient set.  Specifically, if the original portfolio is inefficient and/or not optimal, then one is 

able can find an alternative portfolio by marginally changing the allocation so that the new 

portfolio is superior in the eyes of every risk-averse investor.   

This paper applies the MCSD technique to examine the anomaly of value/size effect.  In 

financial theory, if the market is efficient, then the market portfolio should be in the efficient set 

and thus no alternative portfolio should dominate the market portfolio by reallocating its assets.10  

Thus, using MCSD to examine the existence of value/size anomaly is quite intuitive.  Let the 

market (core) portfolio be decomposed by a set of mutually exclusive different B/M ratio and 

size sub-portfolios similar to those in Fama and French (1992, 1996, and 1998). 11    If there is at 

least one marginal dominance condition among the local portfolios, e.g. the local portfolio of low 

B/M (value) dominates that of the high B/M (growth), then, according to the theory of MCSD, 

the market portfolio is inefficient.  From the viewpoint of all risk-averse investors, a superior 

portfolio can be formed by taking long positions in the marginally dominating shares of value 

stocks at the cost of shorting the marginally dominated shares of growth stocks.   In brief, the test 

of anomaly focuses on the efficiency of the market portfolio by evaluating the marginal 

contribution of a local portfolio to the core portfolio.   In addition, since MCSD ranks portfolios 

by comparing the conditional return distributions of portfolios with respect to the market return 

                                                                                                                                                                                           
9 Shalit and Yitzhaki (2003) have applied the MCSD to an asset allocation puzzle.  
10 An efficient set of portfolios is that inside the set, no portfolio is dominated by any other portfolio.  If the return 
distribution of assets can be characterized by the first two moments of the distribution, efficient portfolios of risky 
and/or  risk-free assets are located on the Capital Market Line (CML) in the mean-variance framework.  The market 
portfolio is also located on the CML.  In equilibrium, the market portfolio is optimal, and other combinations of 
assets should dominate the market portfolio. 
11 All stocks are separated into two size groups, small or big (S or B), based on the median size for all stocks 
concerned.  Further, stocks are broken into three book to market equity (B/M) groups based on the break points for 
the bottom 30% (L), middle 40% (M) and top 30% (H) of the ranked values of B/M for the stocks in question.   
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distribution, unlike traditional SD, MCSD ordering results are insensitive to changes in market 

conditions.   The MCSD approach is superior to conventional performance measurements, such 

as Sharpe (1966, 1994), Treynor (1966), and Jensen (1968), in that MCSD considers the entire 

joint distribution of assets and the market, not just summary statistics such as the mean, variance, 

and beta coefficients.  Importantly, MCSD, unlike the traditional market models, does not rely on 

a linear return generating process and makes no assumption about the form of the underlying 

probability distribution.   Chow (2001) developed a simple statistical test for MCSD and showed 

that it has the power to detect dominance for samples with more than 300 observations, and is 

robust under both homoskedasticity and heteroskedasticity.   

The paper is organized as follows. Section II reviews the MCSD ranking rule and its 

statistical inference procedures.  Using data provided by Kenneth French, section III provides an 

empirical analysis of MCSD.  The results show that value portfolios do outperform growth 

portfolios and the market portfolio in U.S. markets.  However, using international data, the 

dominance of value stocks over growth stocks does not appear to hold worldwide.  Interestingly, 

international stock markets appear to have different value-growth effects using different 

valuation criteria including book to market (B/M), earnings to price (E/P), cash earnings to price 

(C/P), and dividend yield to price (D/P).   Finally, section IV provides brief concluding remarks. 

 
 
II. MARGINAL CONDITIONAL STOCHASTIC DOMINANCE TEST 
 
 Suppose investors hold a diversified core-portfolio, and the core-portfolio can be 

decomposed into a set of n mutually exclusive sub-portfolios.  For example, let the value 

weighted portfolio of all stocks be the core-portfolio, and it can be decomposed into a set of sub-

portfolios according to different value and size criteria as suggested by Fama and French (1992).  
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The return of the core-portfolio can be written as ∑
=

=
n

p
ppm rwr

1
, where rp  is the return of the p-th 

sub-portfolio, and 1
1

=∑
=

n

i
iw .  Assume that investors are maximizing their expected utility of 

returns.  If the existing asset allocation of the core-portfolio is not optimal, investors will be able 

to improve their expected utility by increasing the holding of one sub-portfolio p by decreasing 

their position of another sub-portfolio q.  For instance, if anomalies such as the value/size effects 

do exist, a portfolio reallocation process implemented by active investment strategies, i.e., 

buying value stocks at the cost of selling growth stocks, will increase investor utility.  That is, 

investors increase wp and decrease wq  keeping the sum constant, so that  

(1)     0=+ qp dwdw  

Shalit and Yitzhaki (1994) demonstrate that  

 
Definition 1.  For all risk-averse and expected utility maximizing investors, given the existing 
market portfolio, the following condition ensures that investors prefer to increase holdings of 
portfolio k and decrease holdings of portfolio j:  
 

(2)              0  )])(('[))(( ≥−= qp
p

rrWuEWuE
dw

d ,12  where 

                            ∑
=

+=
n

p
pprwW

1
1 . 

 
 

Shalit and Yitzhaki (1994) formulate the necessary and sufficient conditions, called MCSD, to 

ensure the inequality (2) in terms of concentration curves (ACCs), which are defined as the 

cumulative expected returns on a sub-portfolio conditional on the return on the core-portfolio.  

                                                           
12 This is the standard Arrow (1970, p. 101) condition, but for random wealth. 
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Since the concept of ACC is less familiar to financial researchers, Chow (2001) re-formulates the 

MCSD conditions in a relatively simple framework as follows:  

 
Theorem 1.  Marginal Conditional Stochastic Dominance (MCSD). For all risk-averse 
investors (u"<0), portfolio p marginally and conditionally dominates portfolio q such that 

 )])(('[ qp rrWuE − ≥ 0  if and only if  
 

(3.1)   ∫ ∫∫ ∫ ∞−

∞

∞−∞−

∞

∞−
≥

mm

qmmqqpmmpp drdrrrfrdrdrrrfr ρρ ττ
 ),(  ),( , or 

 
(3.2) E ( ) 0    ≥≤− m

mqp rrr ρτ , or  

(3.3) E ( ) 0    )( )( ≥− m
pqp Irr τ , 

 
 for all ρ, where 10 ≤≤ ρ , E is the expectation operator, and m

ρτ = )(1 ρ−
mF .13 ρ=mF  is the 

cumulative density function of mr .14  )( m
pI τ  = 1, if m

pmr τ≤ , and )( m
pI τ = 0, otherwise. 

 
It is important to note that the inequality (3) is consistent with expected utility maximization 

without prior knowledge about individual utility functions and the underlying form of the return 

generating process of assets.    Therefore, the MCSD rule is separated from an individual 

investor's utility and is also distribution-free.  In addition, when ρ = 1, the inequality (3) is 

equivalent to the difference of mean returns between sub-portfolios p and q, respectively.15 

Shalit and Yitzhaki (1994) further showed that if a MCSD exists between two sub-portfolios, 

then the following inequality of Gini-risk adjusted means must hold: 

                                                           
13 Since ( )m

pmkkmmkk rrpEdrdrrrfr
m
p τ

τ
≤=∫ ∫∞−

∞

∞−
 ),( , the inequality (4) also holds. 

14 Shalit and Yitzhaki (1994) apply the concept of Absolute Concentration Curve (ACC) often used in income 
inequality study to prove the necessary and sufficient conditions of  (2).  Chow (2001) explicitly shows that the 
expression of ACC inequality is equivalent to the conditional mean inequality.     
15 We assume that the distribution is continuous and monotony increase such that m

ρτ = ∞ for ρ = 1.  
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Lemma 1.  Necessary Condition of MCSD. Let pμ and qμ be the mean returns of sub-portfolios 
p and q respectively.  The conditions of positive (Gini risk adjusted) premium,  
 
(4.1)    0≥− qp μμ , and  
 
(4.2)    qqqppp Γ−≥Γ− βμβμ , 
 
are necessary but insufficient to have a positive change in expected utility as referred by  the 
inequality (2), where pβ and qβ conventional beta coefficients of rp and rq, respectively.  pΓ and 

qΓ are their Gini coefficients.16 
 

 From portfolio theory, it is well known that the optimal market portfolio of all assets 

must be efficient in terms of risk-return tradeoff.  That is, implicitly, all investors hold an optimal 

market portfolio by reallocating assets through longing (buying) and shorting (selling) activities 

in an aggregate sense.   Let Mr be the market return such that 
1

n

M i i
i

r rα
=

=∑ , and the cdf of Mr  be 

( )m MF r .  Investors are implicitly maximizing the expected utility of  Mr , ( )
i

MMax EU r
α

, subject 

to 
1

1
n

i
i
α

=

=∑ .  Thus, if investors view asset i as superior to asset j, then the long position of asset i 

increases (increase of iα ) and the short position of dominated asset j increases (decrease of jα ).   

Shalit and Yitzhaki (1994) show that in the portfolio optimization framework, assets i dominates  

j for all concave utility function if and only if  

 

(5)  
    

( , ) ( , )
m m
p p

i i M M i j j M M jr f r r dr dr r f r r dr dr
τ τ∞ ∞

−∞ −∞ −∞ −∞
≥∫ ∫ ∫ ∫ ,  for all p, where 0 1p≤ ≤ , 

 

                                                           
16 The Gini coefficient of rp  distribution can be written as Гp = 2Cov(p, F(rp )), where F(rp ) is the cumulative 
density function of rp. 
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where m
pτ = 1( )mF p− .  Inequality (5) is the rule of Marginal Conditional Stochastic Dominance 

(MCSD).   which has been simplified by Chow (2001).    

To simply the MCSD rule, let 
m

MI τ  be an indicator variable such that 1
m

MI τ =  if m
Mr τ≤ , 

and 0
m

MI τ = , otherwise.  Then,   

 

(6)              
    

( ) ( , )  ( , )
m

m m

i M i M i M M i i i M M iE r I r I f r r dr dr r f r r dr dr
ττ τ∞ ∞ ∞

−∞ −∞ −∞ −∞
= =∫ ∫ ∫ ∫ ,                    

and the MCSD rule as shown in the inequality (5) can be written  
 

(7)      ( )  ( )
m m

i M j ME r I E r Iτ τ≥   for all mτ . 

( )
m

i ME r I τ is the expected return of asset i for all corresponding market returns below the target mτ  

generated from the market distribution.  The difference between SSD and MCSD is that under 

the SSD rule shown in inequality (3), distributions of returns are ordered stand-along according 

to their own cumulative probability functions; but under the MCSD rule as it appears in (7), 

return distributions are ranked conditionally according to the distribution of the core or market 

portfolio.    

To illustrate that SSD and MCSD may yield different result, let's consider the following 

numerical example.  Suppose we have the following vectors of ir , jr , and Mr :   

ir   jr  Mr  

2  3 2 
2  1 3 
2  1 0 
2  0 -1 
1  0 -2 
-4  0 -3 
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Both ir  and jr  have equal means, with the variance of jr  smaller than that of ir .   Note that the 

distributions of ir  and jr  are not symmetric and non-normal.  The jr  distribution is positively 

skewed, and the ir  distribution is negatively skewed.  In addition, ir  is relatively sensitive to the 

down-side of the market return, and jr  is positively correlated with up-side market movements.   

Without any modeling specification, the distributions of ir  and jr  are ranked according 

the SSD rule as follows:      

P i
pτ  SSD ordinate  j

pτ  SSD ordinate 

1/6 -4 -0.67 < 0 0.00 
2/6 1 -0.50 < 0 0.00 
3/6 2 -0.17 < 0 0.00 
4/6 2 0.17 = 1 0.17 
5/6 2 0.50 > 1 0.33 
1 2 0.83 = 3 0.83 

 
It appears that the SSD ordinates between asset i and asset j cross.  This indicates that the 

distributions of ir  and jr  are non-comparable.  The existence of no dominance suggests that asset 

i is as efficient as asset j.    However, by employing the MCSD rule according to (7), We show 

that ir  is clearly dominated by jr .  

mτ  
Corresponding  

ir  
MCSD 
ordinate  

Corresponding  

jr  
MCSD 
ordinate 

-3 -4 -0.67 < 0 0.00 
-2 1 -0.50 < 0 0.00 
-1 2 -0.17 < 0 0.00 
0 2 0.17 = 1 0.17 
2 2 0.50 < 3 0.63 
3 2 0.83 = 1 0.83 

 
This demonstrates that the stand-along SSD ranking method ignores the sensitivity of assets 

returns to market conditions.  MCSD is able to resolve this problem without losing the generality 

of the SSD approach.  Therefore, MCSD is a powerful tool for ranking asset/portfolio 
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performance ranking.  Technically, the key difference between SSD and MCSD rules is that the 

SSD ranking employs different sets of targets, i
pτ  and j

pτ  from each individual distribution.  

However, the MCSD rule uses a common set of targets mτ  generated from the market return 

distribution.17  In fact, this makes the statistical inference of the MCSD very straightforward.    

To demonstrate the statistical inference procedure of MCSD, we begin by selecting a set 

of target returns,{ }1,2,...,m
t t mτ = , corresponding to a set of empirical quantiles of the market 

portfolio return distribution.  Further, let   

 

(8)    ( ) ( )
m m m
t t t

i j i M j ME r I E r Iτ τ τ
−Φ = −  

There are three possible outcomes from the MCSD test: equality ( 0
m
t

i j
τ
−Φ = for all t ) ; dominance 

( 0
m
t

i j
τ
−Φ > for some t, but 0

m
t

i j
τ
−Φ = for the rest of t); and non-comparability ( 0

m
t

i j
τ
−Φ > for at least 

one t, and 0
m
t

i j
τ
−Φ <  for at least one t).  Since conventional goodness of fit testing methods (e.g. 

Chi-square and F-test) are unable to distinguish between dominance and non-comparability 

when the null hypothesis of equality is rejected, a multiple comparison test becomes necessary.  

It is also important to note that, although using empirical quantiles from the market return sample 

as targets may involve sampling variation from the population quantiles, data snooping bias is 

limited.  In fact, MCSD tests two portfolios’ distributions conditionally on the same market 

return distribution. Therefore, the target selection procedure is independent of sampling 

distributions of the portfolio returns.  Since the targets are intended to capture a set of finite 

points of return information from the market return distribution, how robust and/or consistent the 

                                                           
17 Since the targets are common for both asset i and asset j, the expression of the abscissa p in the notation of mτ  is 
not important and can be omitted.   
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sample quantile is to the population quantile, is unimportant to the nature of the MCSD test.    

Importantly, by employing the target approach, the statistical inference of MCSD is simple and 

straightforward.    

 Suppose portfolio returns follow a random walk process.  Given a set of N random 

sample returns, {
1 1 1

( , , )i j Mr r r ,…, ( , , )
N N Ni j Mr r r }, the sample estimates of MCSD ordinates can be 

expressed as: 

 

(9)                           1

1

ˆ ( ) ( )
m m m
t t t

k k k k

N

i j i M q M
k

N r I r Iτ τ τ−
−

=

Φ = −∑ .                                      

 
Chow (2001) shows that ˆ( )

m m
t t

i j i jN τ τ
− −Φ −Φ  is asymptotically and normally distributed with a zero 

mean and a variance, 2( )
m
t

i j
τσ − , such that  

(10)                              2 2 2( ) ( ) ( ) 2
m m m m
t t t t

i j i j ijCovτ τ τ τσ σ σ− = + − , where 

2 2 2( ) [( ) ] [ ( ) ]
m m m
t t t

i i M i ME r I E r Iτ τ τσ = − , 

2 2 2( ) [( ) ] [ ( ) ]
m m m
t t t

j j M j ME r I E r Iτ τ τσ = − ,  and  

                                    [( )( )] [ ( ) ( )]
m m m m m
t t t t t

ij i M j M i M j MCov E r I r I E r I E r Iτ τ τ τ τ= − .                              

Thus, under the null hypothesis :{ 0 1,..., }
m
t

o i jH t mτ
−Φ = = , the appropriate test statistic is  

(11)                                    
ˆ

ˆ

m
t

m
t

m
t

i j
i j

i j

Z N
τ

τ
τσ
−

−

−

Φ
= ,                                                      

for t=1,…,m, respectively,  where ˆ
m
t

i j
τσ − is the estimated standard deviation.    

 Following Chow and Denning (1993), and letting the largest absolute value of the test 

statistic be * m
t

i jZ τ
− =

1

m
t

i jt m
Max Zτ

−≤ ≤
, the confidence interval for the extreme statistic can be defined as  
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* m
t

i jZ τ
− ± );;( ∞mSMM α , where );;( ∞mSMM α is the asymptotic critical value of the α point of the 

Studentised Maximum Modulus (SMM) distribution with parameter m and ∞degrees of freedom.  

Thus, the asymptotic joint confidence interval of at least 100(1-α) percent for a set of MCSD 

estimates is: 

(12)                                     * m
t

i jZ τ
−  ( ; ; )SMM mα± ∞     for t =1,2,…,m .    

One can control the size of a multiple test of MCSD estimates by simply comparing the Z-

statistics with SMM critical values.  The empirical MCSD rules using the above inference 

procedure are summarized as follows: 

Empirical MCSD Inference Rules: 
(a) Asset i dominates (is dominated by) asset j, if 

m
t

i jZ τ
−  ≥ (≤ ) );;( ∞mSMM α for all t and with 

at least one strong inequality.  
(b)      No dominance exists otherwise.  

Chow (2001) demonstrates that although the MCSD test is conservative in nature, it has power to 

detect dominance for samples with more than 300 observations, and is robust under both 

homoskedasticity and heteroskedasticity.   

 

 
III. EMPIRICAL EXAMINATION 
 
 The empirical illustrations use data provided by Kenneth French for both the U.S. and 

international equity markets.18  To examine the performance of value portfolios in the U.S. 

market, the MCSD approach is applied to monthly returns on the market and six value-weighted 

portfolios (B/L, B/M, B/H, S/L, S/M, S/H).   Value portfolios are formed on size and book to 

market ratios from all NYSE, AMEX, and NASAQ stocks.  All returns are from the period 1926 

to 2002.  In addition, sample data are decomposed into two subsets, one for the period 1926 to 
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1974, and another for the period 1975 to 2002.  By creating a set of ten equally spaced 

percentiles, such that 1.01 =Q , 2.02 =Q ,…, 0.110 =Q , a set of target returns is determined by 

the corresponding quantiles of the market return distribution.   Target returns are reported for 

three cases:  (1) the overall sample of 1926-2002, (2) the 1926-1974 sample, and (3) the 1975-

2002 sample.    Portfolio performance, or the dominance condition, is then examined by 

computing the test statistic of equation (8) for a set of MCSD ordinates and by further comparing 

the test statistic with the joint (SMM) critical value.   

Under the MCSD framework, a portfolio of stocks outperforms the market if the 

conditional probability distribution of the stock portfolio ranks above the distribution of the 

underlying market portfolio.   Statistically, this means that the MCSD test statistics comparing 

the ranking ordinates of the stock portfolio p with the market portfolio M, denoted as 
m

p MZ τ
− , 

should be non-negative with at least one statistic that is greater than the SMM critical value.  

Table 1 reports the MCSD tests for six value-weighted stock portfolios of different size and 

value (B/L, B/M, B/H, S/L, S/M, and S/H).   To control for the test size, we compare the test 

statistics with the SMM critical value of 2.81 for the 5 percent level of significance.19   It appears 

that the portfolios of small sized growth stocks (S/L) are dominated by the market portfolio, in 

that the 
m

p MZ τ
−  statistics for the overall sample (1926-2002) and the sub-samples (1926-1974 and 

1975-2002) are mostly negative and are generally below the critical value of  -2.81.  Importantly, 

no significant positive statistics exist.  

 Interestingly, as shown in Table 1, there is a crossing MCSD ranking for the portfolios of 

S/M and S/H over the sample period 1926-2002.  The MCSD Z-statistics of the S/M and S/H 

portfolios at the largest quantile (Q=1.0) are significantly positive (3.09 and 3.33, respectively), 

                                                                                                                                                                                           
18 The data are available online at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. 
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but the Z-statistics for lower quantiles (Q ≤ 0.3) are significantly negative (e.g. –2.87 and -4.12 

at Q = 0.3, respectively).  Note that from equations (3) and (5), the MCSD ordinate, 
m

p M
τ
−Φ , at Q 

= 1.0 (or the largest target point) is the difference of mean returns between a stock portfolio and 

the market portfolio.  The 
m

p M
τ
−Φ  ordinate at the Q = 0.3 quantile represents the (downside) 

conditional mean-difference of returns between the sample portfolio p and market portfolio M 

when the market return is less than –0.011.   Therefore, for the overall S/M and S/H samples, the 

MCSD test shows that, although the mean return on small-sized value stocks is higher than that 

of the market portfolio, the downside conditional mean return for small-sized value stocks is 

significantly lower than the downside expected market return.  Consequently, small value stocks 

do not outperform the market in the U.S.20   

 Importantly, the MCSD analysis in Table 1 shows that the value stock anomaly may 

represent a data-snooping bias and/or a sample-specific result.  That is, there exists a conflict in 

dominance results between the pre- and post-1975 samples.  For the sample period 1975-2002, 

value stocks (B/H) statistically dominate the market portfolio, and the market portfolio 

statistically dominates growth stocks (B/L).   However, this out-performance (under-

performance) of value (growth) stocks does not exist in the 1926-1974 sub-sample.  In fact, 

value stocks (B/H) are dominated by the market portfolio, and growth stocks dominate the 

market portfolio in the pre-1975 sample.  The conflicting MCSD orderings between pre-1975 

and post-1975 also exist for the S/M and S/H portfolios.  Small sized, high value stocks (S/H) 

dominate the market in the post-1975 period, but the market outperformed the small-sized value 

                                                                                                                                                                                           
19 The SMM critical values are available in Stoline and Ury (1979). 
20 Note that crossing, shown as the existence of both significantly positive and significantly negative statistics, 
implies non-comparability between two distributional orderings.  The small-sized, high value stocks of S/H and S/M 
dominate the market for the period 1975-2001, but the market dominates S/H and S/M during 1926-1975.  This may 
explain why the crossing MCSD ranking exists in the overall sample (1926-2001).     
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stocks before 1975.  As a result, over the entire sample period (1926 to 1975), we observe a 

crossing (non-comparable) ranking (negative statistics for lower quantiles (e.g. Q<0.5) and 

positive statistics for higher quantiles (e.g. Q>0.5)) between small-sized, high value stock 

portfolios and the market portfolio.  In addition, different from large firms, the dominance 

(significant z-statistics) of the post-1975 high value small (S/M and S/H) stocks appears upside 

of the market return distribution.   In summary, Table 1 indicates that the value effect may exist 

after 1975.  However, the effect of firm size appears to be more important than that of value 

before 1975.  The post-1975 analysis implies that large cap value stocks provide downside risk 

protection, and small cap value stocks may have large upside potential.   

 To further examine the value and size effects, Table 2 presents the pair-wise cross-

sectional MCSD comparisons among the 6-portfolios B/L, B/M, B/H, S/L, S/M, and S/H for the 

post-1975 samples.   No dominance exists between the two value portfolios (B/H and S/H).  

However, B/H and S/H significantly dominate other portfolios.  Particularly, B/H and S/H 

strongly dominate growth stocks (B/L and S/L).  This is consistent with the previous analysis 

from Table 1.  This indicates that the value effect is more significant than the size effect after 

1975.   Furthermore, if we define the efficient set of portfolios as the set such that no portfolio 

within the set is dominated by any other portfolio in the set, the MCSD ranking summary in 

Table 2 demonstrates that only the high value portfolios (B/H and S/H) are in the efficient set.  

This evidence suggests that the returns of the high book-to-market (B/M) value portfolios can 

serve as a factor, regardless of firm size, in determining the return-generating process of stocks.    

 The next empirical illustration uses the international stock market data of Kenneth 

French.  The MCSD test is employed to compare the monthly return distributions of value versus 

growth portfolios conditionally on the overall or world market portfolio for January 1975 to 
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December 2001.  For each country, the target returns are determined by the empirical quantiles 

of the world market return distribution.   Table 3 reports the MCSD ranking results of value 

versus growth based on four different valuation criteria: book-to-market (B/M), earnings-to-price 

(E/P), cash earnings-to-price (CE/P), and dividend yield-to-price (D/P).  Kenneth French forms 

the portfolios at the end of December each year by sorting one of the four ratios (B/M, E/P, 

CE/P, and D/P) and then computing value-weighted returns for the following 12 months. The 

value portfolios (High) contain firms in the top 30% and the growth portfolios (Low) contain 

firms in the bottom 30%.   From Table 3.1, the MCSD test generally does not support the Fama 

and French (1998) empirical findings, in that only five of twenty-one countries, including 

Australia, Belgium, Japan, Spain, and the U.S., show that B/M value stocks statistically dominate 

B/M growth stocks.21  By changing the valuation criterion from B/M to earnings-to-price (E/P), 

Table 3.2 shows that four countries, Australia, Japan, Hong Kong and the U.S., have consistent 

MCSD dominance of value stocks over growth stocks.  However, the value effect of Belgium 

and Spain vanishes.  Interestingly, it appears that the value effect may vary from country to 

country by different valuation criteria.   Furthermore, if we restrict earnings to be cash earnings 

only, it appears, from Table 3.3, that in addition to Australia, Hong Kong, and the U.S., the CE/P 

has an effect in determining the out-performance of value stocks in Germany.   Japanese equity 

market has no value effect on the CE/P criterion, although it is significantly sensitive to the E/P 

and B/M.  Finally, the MCSD test is applied to the value-growth data using the dividend yield-to-

price (D/P) criterion.  From Table 3.4, one third of the 21 global markets, including Australia, 

France, Hong Kong, Japan, Malaysia, Switzerland, and the U.S., show significant dominance of 

value stocks (with high D/P) over growth stocks (with low D/P).  In fact, the MCSD test 

                                                           
21 Fama and French (1998) found that value stocks outperform growth stocks in twelve of thirteen international 
equity markets during the 1975-1995 period. 
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statistics appear to be much stronger than those in Tables 3.1, 3.2 and 3.3.  This suggests that the 

D/P criterion is more effective in distinguishing value and growth stocks than any of the other 

criteria evaluated.    In summary, the MCSD tests show that there is no growth-equity portfolio 

in all countries that outperform the market.  Although the value effect exists for some countries, 

the effect varies by different valuation criteria.    

 To examine which valuation criterion is superior in determining value stocks, we test the 

dominance condition among all value portfolios according to four different criteria of B/M, E/P, 

CE/P, and D/P, respectively.22  Table 4 presents the MCSD ranking results for the 14 

international equity markets.  It appears that the B/M criterion is superior to the D/P criterion in 

the German market, and the B/M value stocks dominate the E/P value stocks in the Japanese 

market.  However, the Dividend Yield-to-Price seems to be a more effective criterion than the 

B/M method in the stock markets of Malaysia and Switzerland.  For the remaining countries, 

there is actually no difference among the four valuation criteria in determining value stocks.  

This is because there is no statistical MCSD dominance for all possible rankings among value 

stock portfolios.  Note that value stocks dominate growth stocks for all valuation methods shown 

in Table 3.  From Table 4, the pair-wise MCSD rankings of US value stocks from different 

valuation criteria shows no dominance.  This indicates that B/M, E/P, CE/P, and D/P are equally 

effective in discriminating value and growth stocks in the US equity market. 

 Finally, the MCSD is used to test the out-performance of the U.S. value stocks to other 

countries' value stocks.  It appears that in Table 5, the value portfolios of Japan and Netherlands 

are dominated by these of the U.S. according all four criteria of B/M, E/P, CE/P and D/P.  The 

U.S. equity market dominates the equity market portfolios of Italy, Japan, Netherlands, and 

                                                           
22 Since from Table 3, value stocks are not generally dominated by the growth stocks, the analysis focuses on only 
value stocks.   
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United Kingdom, and no international equity market dominates the U.S. market.  This indicates 

the U.S. market out-performed the world market during our sample period of Post-1975.  It is 

important to note that neither the U.S. value stocks dominate the value stocks of Australia, 

Belgium, Singapore, Spain, Sweden, and Switzerland, nor any non-US value- portfolios 

dominates U.S. value stocks.   

 

IV CONCLUSION 

 Beginning from Fama and French (1992, 1993), two fundamental firm attributes, the 

market equity (ME) and the ratio of book equity to market equity (B/M), have been well 

documented.  Smaller stocks have higher average returns than larger stocks, and those firms with 

high B/M have higher average returns than firms with lower B/M.  The tendency of value (small) 

stocks to outperform growth (large) stocks is not an anomaly.  It can be viewed as risk factors, in 

equilibrium, priced in addition to the traditional CAPM-type systematic risk.  Consequently, the 

value premium and size premium must be included in identifying the return generating process 

for equity.   

 This article argues that before specifying value and size to be additional factors in pricing 

financial assets, one must cautiously ensure the existence of out-performance of value and/or size 

portfolios.  Without assumptions about the forms of investors' utility functions and that of return 

distributions, stochastic dominance (SD) is a powerful tool to examine the condition of 

dominance.  Unfortunately, the traditional SD compares distributions independently without 

considering the joint nature between assets and the market core portfolio.  The newly developed 

marginal and conditional stochastic dominance (MCSD) is able to overcome this problem in that 

it ranks assets based on their conditional distributions on market conditions.    By applying the 
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MCSD test of Chow (2000) to French's data for both the U.S. and international equity markets, 

we show that there is some weak evidence of the out-performance for the value stocks in the 

U.S. equity markets from the post-1975 data.  The value stocks do not dominate growth stocks 

for the pre-1975 period.  This clearly indicates that value effect is not an anomaly but could be 

simply a risk-factor such that a risk premium exists between the value and growth.   

Further, the MCSD test is employed to examine value effect in international equity 

markets.  It appears that the equity markets of Australia Hong Kong and Japan are quite similar 

to the U.S. market in that value stocks outperform growth stocks.  Nevertheless, the markets in 

Europe and elsewhere show no effect of value over growth.  Importantly, negative MCSD 

ordinates and statistics for many countries exists indicating there are no positive premiums of 

growth over value.  Consequently, the value factor in the international equity-pricing model must 

be used cautiously.     
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Table 1. 

Marginal Stochastic Dominance of Value and Growth Portfolios in US 
 

To test the out-performance of value stocks, we calculate MCSD statistics τ
MpZ −  (value stocks over the 

market), for the portfolios of B/L, B/M, B/H, S/L, S/M, and S/H corresponding to empirical quantiles of 
market return distribution, )(ˆ 1 pFm

−=τ .  Monthly value premiums and market returns are obtained directly 
from Kenneth French’s data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. The 
corresponding MCSD ordinates are statistically different from zero at the 5 percent level when compared 
the Z-score with the SMM critical value of 2.81. The CMD ordinate at p = 1.0 is equivalent to the 
unconditional mean return.     

 
Target Return     Quantile      

)(ˆ 1 QFm
−=τ   

Q = 0.1 
 

Q = 0.2 
 

Q = 0.3 
 

Q = 0.4 
 

Q = 0.5 
 

Q = 0.6 
 

Q = 0.7 
 

Q = 0.8 
 

Q = 0.9 
 

Q = 1.0 
1926-2001 -0.051 -0.026 -0.011 0.002 0.013 0.023 0.034 0.047 0.064 0.383 
1926-1974 -0.056 -0.029 -0.013 0.001 0.011 0.209 0.032 0.047 0.061 0.383 
1975-2001 -0.039 -0.021 -0.010 0.004 0.015 0.025 0.038 0.047 0.066 0.141 

     τ
MpZ −       

B/L           

1926-2001  1.41  0.96   1.38  0.10 -0.92 -1.13 -0.37  -0.15 -0.41 -0.81 
1926-1974  2.13  2.36    3.03* 2.54 2.10  1.86  2.01    1.95   0.97   0.39 
1975-2001 -2.48 -2.33 -2.73   -3.61* -4.58*  -4.32*   -3.35* -2.72 -1.58 -0.86 

B/M           

1926-2001   1.85  2.97*   3.13*   3.74*    3.82*   3.41* 1.74    0.87   0.04 0.48 
1926-1974 -0.10 1.22 1.45 1.98 1.73 1.32 0.50 -0.11 -0.58 0.30 
1975-2001    3.72*   3.56*   3.63*   3.75*   3.95*   3.92* 2.27 1.32 0.35 0.35 

B/H           

1926-2001 -1.67 -1.60 -2.43 -1.51 -0.66 0.14 -0.07 0.10 0.53 2.26 
1926-1974  -3.36*  -3.95*  -4.90*  -4.01*   -3.34* -2.61 -2.15 -1.65 -0.71 2.07 
1975-2001   3.41*   4.06*   4.48*   4.94*    5.60*    3.63*    3.25*    2.87* 1.66 1.05 

S/L           

1926-2001 -5.73* -5.57* -5.76* -5.12* -5.23* -3.47* -2.50 -2.46 -1.08 0.64 
1926-1974 -3.82* -5.01* -5.32* -5.58* -4.72* -3.73* -2.62 -2.57 -1.39 0.59 
1975-2001 -5.55* -5.06* -4.31* -4.52* -4.03* -3.53* -1.49 -2.07 -0.98 0.45 

S/M           
1926-2001 -3.59* -3.42*  -2.87* -2.27 -0.90 0.08   0.89 0.87   2.11   3.09* 
1926-1974 -3.40* -4.77*  -5.21*  -4.79*  -3.35* -2.59 -1.85 -1.72 -0.28 1.95 
1975-2002 0.61 1.60 2.27 2.22 2.97    3.55*    3.84*    3.72*    3.56*   2.88* 

S/H           

1926-2001  -4.47*  -4.27*  -4.12*  -3.21* -1.55 -0.54  0.41   1.57    2.94*   3.33* 
1926-1974  -4.39*  -5.49*  -6.11*  -5.42*   -3.99*   -3.25* -2.33 -2.04 -0.35 2.31 
1975-2001 0.92 1.83 2.51 2.78    4.02*    4.43*    4.56*    4.13*    3.58*   2.83* 

 

http://mba.tuck.dartmouth.edu/
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Table 2 
Cross-sectional MCSD Ranking of Value-Growth Portfolios 

 
To test the value effect, we calculate MCSD statistics τ

ji ppZ −  (portfolio Pi   vs.  portfolio Pj ),  among B/L, 

B/M, B/H, S/L, S/M, and S/H corresponding to empirical quantiles of market return 
distribution, )(ˆ 1 pFm

−=τ .  Monthly value premiums and market returns are obtained directly from Kenneth 
French’s data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. The corresponding 
MCSD ordinates are statistically different from zero at the 5 percent level when compared the Z-score 
with the SMM critical value of 2.81. The CMD ordinate at p = 1.0 is equivalent to the unconditional mean 
return.     
 

      
τ

ji ppZ −       

)(ˆ 1 qFm
−=τ   q=0.1 q=0.2 q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9 q=1.0 

B/L  vs. B/M     -3.83*   -3.53*   -3.70* -4.17* -4.75* -4.60* -3.03* -2.04 -0.89 -0.59 
B/L  vs. B/H     -3.52*   -4.01*  -4.44* -5.09* -5.91* -5.64* -3.73* -3.13* -1.80 -1.09 
B/L  vs. S/L      2.96*    3.32*    3.36* 3.31* 2.49 2.08 0.60 0.11 -0.33 -0.63 
B/L  vs. S/M  -1.16 -1.96 -2.61 -2.97* -3.88* -4.26* -4.19* -3.85* -3.34* -2.56 
B/L  vs. S/H  -1.34 -2.07 -2.72 -3.25* -4.54* -4.82* -4.65* -4.13* -3.35* -2.54 
B/M vs. B/H  -1.57 -2.29 -2.69 -3.03 -3.51* -3.09* -2.22 -2.48 -1.83 -1.02 
B/M vs. S/L     4.00*    4.46*    4.72* 4.95* 4.56* 4.18* 1.86 1.07 0.16 -0.23 
B/M vs. S/M   1.50  0.50 -0.17 -0.21 -0.68 -1.18 -2.06 -2.42 -2.91 -2.28 
B/M vs. S/H   0.94  0.01 -0.59 -0.92 -1.99 -2.32 -3.07* -3.34* -3.35* -2.58 
B/H  vs. S/L     4.00*    4.71*    5.22* 5.64* 5.65* 5.12* 2.50 1.90 0.84 0.20 
B/H  vs. S/M     2.89*  2.78  1.72 1.95 1.87 0.99 -0.44 -0.60 -1.43 -1.53 
B/H  vs. S/H   2.26  1.82  1.35 1.32 0.45 -0.20 -1.54 -1.76 -2.17 -2.10 
S/L   vs. S/M    -4.21*   -5.68*   -6.88* -7.49* -7.74* -7.57* -4.63* -3.74* -2.76 -1.66 
S/L   vs. S/H   -4.21*   -5.42*   -6.51* -7.14* -7.87* -7.63* -4.86* -4.03* -2.90* -1.84 
S/M  vs. S/H  -1.03  -1.09 -1.18 -1.83 -3.34 -2.76 -2.49 -2.26 -1.46 -1.09 

 
 
 
                                                                    MCSD Ranking Summary 
 
A ">" means that the country listed in the left column dominates the country in the top row.  A "<" means that the 
country listed in the top row dominates the country listed in the left column.  An "X" means no dominance.   
 

 B/M B/H S/L S/M S/H 
B/L < < > < < 
B/M  < > < < 
B/H   > > X 
S/L    < < 
S/M     < 

 

http://mba.tuck.dartmouth.edu/


 23

Table 3.1 
MCSD Tests for International Value-Growth Equity Portfolios: Book-to-Market  (B/M) 

 
The MCSD test statistics are denoted as  τ

gvZ −  (Value Portfolio vs.  Growth Portfolio) corresponding to 

empirical quantiles of the world market index return distribution, )(ˆ 1 pFm
−=τ .  Monthly value premiums and 

market returns are obtained directly from Kenneth French’s data library at http://mba.tuck.dartmouth.edu/ 
pages/faculty/ken.french. The corresponding MCSD ordinates are statistically different from zero at the 5 
percent level when compared the Z-score with the SMM critical value of 2.81. The CMD ordinate at p = 
1.0 is equivalent to the unconditional mean return.     

  

      
τ

gvZ −       

)(ˆ 1 qFm
−=τ   q=0.1 q=0.2 q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9 q=1.0 

Austria   0.90  1.22  1.05  1.60   2.29  2.14   2.30   2.31 2.04  1.42 
Australia   1.92  1.60    3.43*    3.21*     4.32*    4.46*     4.54*     3.89*   3.60*  2.28 
Belgium   2.18  2.90    2.98*    3.16*     3.32*  2.77   2.05   1.52 1.69  1.72 
Denmark   1.91  0.87  0.95  1.04   0.98  0.69   0.38   0.48 0.08 -0.72 
Finland   2.47  2.76  2.54  2.49  2.20  2.60   2.15   1.20  0.23 -1.03 
France   0.30  0.94  1.35  0.96  1.09  1.18   1.48   1.48  1.09  1.49 
Germany   0.63  0.33  0.57  0.97  1.72  1.80   2.01   2.59  2.78  2.41 
Hong Kong  -0.90 -1.34 -0.86 -0.98 -0.75 -0.76  -0.05   0.24 -0.04  1.23 
Ireland  -0.79  0.31 -0.43 0.20  0.33   0.30  -0.26  -0.55 -0.57 -0.53 
Italy  1.82  1.81  1.01 1.02  1.10   0.50    0.74   0.97  0.14  0.52 
Japan  2.77    3.05*    3.32*   3.94*    3.40*    3.53*     3.55*     3.56*    3.91*     3.46*
Malaysia  -1.52 -0.40 -0.14  0.00 -0.23 -0.32 -0.26  0.28  0.10   1.11 
Netherlands  -0.91 -1.38 -1.65 -0.93 -1.15 -1.11 -0.80 -0.77 -0.41 -0.75 
New Zealand  -1.66 -0.28 -0.98 -1.04 -1.13 -0.68 -0.91 -1.42 -1.57 -0.98 
Norway  -0.28 -0.48 -0.62 -0.79 -0.50 -0.61 -0.10 -0.15 -0.13   0.21 
Singapore  -0.52 -1.17 -0.86 -1.41 -1.33 -1.11 -1.03 -0.52  0.27   2.31 
Spain   2.49    2.82*    3.06*  1.74  2.63  2.25  1.96   1.55  1.21   0.56 
Sweden   1.69  1.72  0.39  0.01  0.03  0.22 -0.12   0.48  1.05   0.10 
Switzerland   0.90  1.22  1.19  0.76  1.46  1.49  1.26   0.39  0.49   0.30 
UK   0.48  1.07  0.78  0.63  1.52  1.26  1.63   1.82  1.91   1.49 
USA     3.52*    4.20*   4.94*    5.60*    6.51*    6.37*   5.24*     4.36*    3.03*   2.07 

 

http://mba.tuck.dartmouth.edu/
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Table 3.2 
MCSD Tests for International Value-Growth Equity Portfolios: Earning-Price (E/P) 

 
The MCSD test statistics are denoted as  τ

gvZ −  (Value Portfolio vs.  Growth Portfolio) corresponding to 

empirical quantiles of the world market index return distribution, )(ˆ 1 pFm
−=τ .  Monthly value premiums and 

market returns are obtained directly from Kenneth French’s data library at http://mba.tuck.dartmouth.edu/ 
pages/faculty/ken.french. The corresponding MCSD ordinates are statistically different from zero at the 5 
percent level when compared the Z-score with the SMM critical value of 2.81. The CMD ordinate at p = 
1.0 is equivalent to the unconditional mean return.     
 

 

      
gvZ −

τ       

)(ˆ 1 qFm
−=τ   q=0.1 q=0.2 q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9 q=1.0 

Austria   0.52   1.25  1.57  2.23  2.16   1.93  2.00  1.04  0.87   1.04 
Australia      3.17*     3.25*    4.34*    3.90*    4.87*     5.16*    4.91*    3.97*    3.22*   1.56 
Belgium   1.01  1.20  0.90  1.00  1.43   0.93  0.54  0.68  0.63    0.40 
Denmark   1.21  1.73  1.76  0.95  0.61   0.45  0.47  0.07 -1.07  -1.68 
Finland   2.30  2.70  2.28  2.17  1.77   2.08  1.63  0.66 -0.16  -1.31 
France  -0.49  0.61  0.69  0.18  0.52   0.44  0.69  0.40  0.41   1.11 
Germany   1.10  0.45  0.18  0.65  1.12   1.09  1.26  1.68  1.43   1.51 
Hong Kong   1.92  2.27  2.68    3.27*    3.74*     3.55*     3.03*     2.87*  2.11   1.30 
Ireland  -1.20 -0.30 -0.25 -0.54  0.51   0.86   0.21 -0.23 -1.09 -0.69 
Italy   0.89  1.57  0.49 -0.15 -0.12  -0.55 -0.72 -0.65 -1.09 -0.75 
Japan   2.74    3.30*    3.81*    3.97*    4.57*     4.36*     4.28*    3.82*    3.87*  2.74 
Malaysia   0.09  1.60  1.56  2.26  2.13   2.05   1.58  1.75  1.51  1.53 
Netherlands  -1.29 -0.36 -0.30  0.07 -0.04 -0.21   0.77  0.85  1.63  1.45 
New Zealand  -0.79 -1.50 -1.98 -1.44 -1.58 -1.65  -1.68 -2.18 -2.13     -0.80 
Norway    0.15 -0.32  0.33  0.49  1.38   1.39   1.90   1.33  1.23  1.19 
Singapore    1.28   1.81  2.55  2.32  2.16   2.41   1.48   1.23  0.73  0.60 
Spain    1.29     1.43  1.38  1.52  2.42   2.12   2.11   2.09  2.13  1.69 
Sweden    1.63   1.28  0.59  0.39  0.62   0.74   0.22   0.63  0.36     -0.12 
Switzerland    1.59    1.28  1.74  1.57  2.23   1.65   1.62   1.01  1.16  0.48 
UK  -0.33   0.53  0.85  1.17  1.89   1.98   1.90   1.22  1.42  0.92 
USA     3.15*     3.61*   4.24*    4.97*    5.62*     5.66*    4.88*     4.61*   3.22* 2.72 
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Table 3.3 
MCSD Tests for International Value-Growth Equity Portfolios: Cash Earning-Price (CE/P) 

 
The MCSD test statistics are denoted as  τ

gvZ −  (Value Portfolio vs.  Growth Portfolio) corresponding to 

empirical quantiles of the world market index return distribution, )(ˆ 1 pFm
−=τ .  Monthly value premiums and 

market returns are obtained directly from Kenneth French’s data library at http://mba.tuck.dartmouth.edu/ 
pages/faculty/ken.french. The corresponding MCSD ordinates are statistically different from zero at the 5 
percent level when compared the Z-score with the SMM critical value of 2.81. The CMD ordinate at p = 
1.0 is equivalent to the unconditional mean return.     
 

 

      
gvZ −

τ       

)(ˆ 1 qFm
−=τ   q=0.1 q=0.2 q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9 q=1.0 

Austria   0.24  0.60  0.92  2.01  2.18  2.34  2.39  2.40  2.11  1.48 
Australia      3.63*    3.80*    4.60*    4.15*    5.04*    5.19*    5.59*    5.30*    4.65*    3.46* 
Belgium   1.76  2.09  2.15  2.19  2.45  2.13  1.60  1.80  1.86  1.71 
Denmark   2.21  1.73  1.76  0.95  0.61  0.45  0.47  0.07 -1.07 -1.68 
Finland   2.01  2.71  2.56  2.48  1.81  1.79  1.27  0.41 -0.46 -1.84 
France  -0.60  0.31  0.14 -0.27  0.18  0.67  0.95  1.17  0.75  1.44 
Germany   1.60  0.99  1.51  1.89  2.24  2.17  2.20    2.90*    2.87*  2.50 
Hong Kong   1.82  1.91  2.39    2.88*    3.54*    3.51*    2.82*  2.31  1.26  0.77 
Ireland  -0.45  0.82  1.04  1.17  1.64  1.82  1.52  1.02 -0.14  0.18 
Italy   0.35 -0.12 -1.21 -0.87  0.31 -0.04  0.82  1.36 1.03  1.93 
Japan   2.38  2.38  2.39 2.37  2.13 1.98  1.94  1.90 2.70  2.39 
Malaysia  -0.04  1.48  1.63 2.64  2.48 2.57  2.23  2.21 2.17  2.39 
Netherlands  -1.43 -1.22 -0.98 -0.12 -0.38 -0.67 -0.30 -0.24 0.26  0.03 
New Zealand  -1.21 -1.87 -2.07 -1.74 -1.42 -0.99 -1.04 -1.48 -1.63 -0.30 
Norway  -0.14 -0.24 -0.05 -0.20  0.80 1.71  1.97  1.53 1.81  1.97 
Singapore   1.22  1.34  1.65  1.83  1.72 1.80  1.28  1.21  0.75  0.94 
Spain   0.34  0.57  0.84  0.94  1.56 1.36  1.63  1.28  1.18  1.43 
Sweden   1.37  0.88 -0.30 -0.26 -0.20 0.13 -0.28  0.36  0.85  0.37 
Switzerland   1.21  1.12  1.37  1.20  1.72 1.22  1.08  0.71  0.85 -0.13 
UK  -0.16  0.31  0.81  1.12  2.12 2.20  2.49  2.21  2.20  1.77 
USA      3.81*    4.36*    5.12*    6.13*    6.61*    6.87*    5.52*    4.57*    2.99*  2.04 
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Table 3.4 
MCSD Tests for International Value-Growth Equity Portfolios: Dividend Yield-Price (D/P) 

 
The MCSD test statistics are denoted as  τ

gvZ −  (Value Portfolio vs.  Growth Portfolio) corresponding to 

empirical quantiles of the world market index return distribution, )(ˆ 1 pFm
−=τ .  Monthly value premiums and 

market returns are obtained directly from Kenneth French’s data library at http://mba.tuck.dartmouth.edu/ 
pages/faculty/ken.french. The corresponding MCSD ordinates are statistically different from zero at the 5 
percent level when compared the Z-score with the SMM critical value of 2.81. The CMD ordinate at p = 
1.0 is equivalent to the unconditional mean return.     
 

 

      
gvZ −

τ       

)(ˆ 1 qFm
−=τ   q=0.1 q=0.2 q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9 q=1.0 

Austria  -0.37   0.18  0.04  1.33  1.62  1.75  2.09  2.49  2.02  2.20 
Australia      3.40*     3.79*    4.35*    3.97*    4.69*    4.35*    4.16*    3.32*  2.46  0.93 
Belgium   0.92  0.41  0.89  1.04  0.73  0.30  0.10 -0.29 -0.10 -0.14 
Denmark   0.12 -1.45 -0.65 -0.52 -0.51 -0.31 -1.04 -0.84 -1.86 -0.99 
Finland   2.29  2.79  2.45  2.76  2.48  2.60  1.98  1.20  0.41 -1.19 
France   1.19  2.41  2.78    2.88*    2.90*    3.16*    2.98*  2.66  2.03  2.01 
Germany   1.86  2.11  1.57  1.50  1.69  2.01  2.29  2.35  2.05  0.82 
Hong Kong     3.50*    4.52*    5.28*    5.87*    5.31*    4.92*    4.04*    2.86*  1.23 -0.13 
Ireland   0.01  1.26  1.12  1.08  1.32  1.38  1.15  0.87  0.32  0.03 
Italy   0.28  1.16  1.20  1.42  2.41  1.95  1.90  2.03  1.50  1.21 
Japan     3.16*    2.99*  2.48  2.64  1.95  1.81  1.57  1.17  1.82  1.71 
Malaysia   1.64    3.20*    4.44*    5.03*    3.97*    4.16*    4.02*    4.06*  2.85  2.05 
Netherlands   1.26  0.54  1.05  0.88  0.59  0.34  1.09  1.41  1.79  1.19 
New Zealand   0.24 -1.27 -0.55  -0.01 -0.82 -1.45 -1.63 -1.29 -0.62 -0.23 
Norway   2.15  0.84  1.91  1.54  2.04  2.07  2.46  1.82  1.42  1.24 
Singapore   1.06  1.07  1.93  2.27  1.63  1.10  1.07  0.72  0.53  0.59 
Spain   1.43  1.35  1.60  1.07  1.98  2.20  2.17  2.71  2.39  1.63 
Sweden   1.44  2.00  0.84  0.60  0.90  0.93  0.35  0.84  1.25  0.53 
Switzerland   1.83  2.14    2.87*    2.94*    3.12*    2.85*  2.35  1.83  2.10  1.31 
UK  -0.45  1.06  1.47  1.50  1.71  1.31  1.44  1.01  0.98  0.42 
USA     4.72*    5.87*    7.11*    7.73*    7.75*    7.42*    5.11*    3.85*  2.23  0.66 
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Table 4 
MCSD Ranking of Value Portfolios among Different Selection Criteria  

 
BMV, EPV, CEPV and DPV are the value portfolios using B/M, E/P, CEP and D/P criteria respectively.  
A ">" means that the country listed in the left column dominates the country in the top row.  A "<" means  
that the country listed in the top row dominates the country listed in the left column.  An "X" means no dominance.   
 
       EPV CEPV DPV   EPV CEPV DPV 
Australia       Netherlands    

BMV X X X  BMV X X < 
EPV  X X  EPV  X X 

CEPV   X  CEPV   X 
        

Belgium     Singapore    
BMV X X X  BMV X X X 
EPV  X X  EPV  X X 

CEPV   X  CEPV   X 
 

France     Spain    
BMV X X X  BMV X X X 
EPV  X X  EPV  X X 

CEPV   X  CEPV   X 
 

Germany     Sweden    
BMV X X >  BMV X X X 
EPV  X X  EPV  X X 

CEPV   X  CEPV   X 
 

Hong Kong     Switzerland    
BMV X X X  BMV X X < 
EPV  X X  EPV  X X 

CEPV   X  CEPV   X 
 

Italy     UK    
BMV X X X  BMV X X X 
EPV  X X  EPV  X X 

CEPV   X  CEPV   X 
 

Japan     USA    
BMV > X X  BMV X X X 
EPV  X X  EPV  X X 

CEPV   X  CEPV   X 
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Table 5 
MCSD Ranking between the U.S. and International Value Portfolios among Different Selection Criteria 

 
BMV, EPV, CEPV and DPV are the value portfolios using B/M, E/P, CEP and D/P criteria respectively.  MKT is denoted as the 
market portfolios.  A ">" means that the country listed in the left column dominates the country in the top row.  A "<" means that 
the country listed in the top row dominates the country listed in the left column.  An "X" means no dominance.   
            United States                                                                      United States 

       BMV   EPV    CEPV      DPV     MKT                                       BMV     EPV     CEPV     DPV    MKT    
Australia      Netherlands 
BMV      X    X     X     X     X     BMV        <     <     <     <     <    
EPV      X    X     X     X     X  EPV        <     <     <     <     < 
CEPV     X    X     X     X     X   CEPV       <     <     <     <     <  
DPV      X    X     X     X     X   DPV        <     <     <     <     < 
MKT    <   <     <     <     <     MKT        <     <     <     <     < 
 
Belgium       Singapore      
BMV      X    X     X     X     X    BMV        X     X     X     X     X       
EPV      X    X     X     X     X         EPV        X     X     X     X     X  
CEPV     X    X     X     X     X        CEPV       X     X     X     X     X  
DPV      X    X     X     X     X        DPV        X     X     X     X     X  
MKT    X    X     X     X     X      MKT        X     X     X     X     X  
 
France       Spain 
BMV      X    X     X     X     X        BMV        X     X     X     X     X  
EPV      <    <     <     <     <    EPV        X     X     X     X     X 
CEPV     <    X     X     X     <   CEPV       X     X     X     X     X 
DPV      X    X     X     <     <   DPV        X     X     X     X     X 
MKT    <   <     <     <     <     MKT        X     X     X     X     X 
 
Germany      Sweden     
BMV      X    X     X     X     X   BMV        X     X     X     X     X  
EPV      <    X     X     <     <   EPV        X     X     X     X     X 
CEPV     X    X     X     X     X   CEPV       X     X     X     X     X  
DPV      <    <     <     <     <   DPV        X     X     X     X     X 
MKT    <   <     <     <     <     MKT        X     X     X     X     X 
 
Hong Kong       Switzerland 
BMV      X    X     X     X     X   BMV        <     X     X     X     X 
EPV      X    X     X     X     X   EPV        X     X     X     X     X  
CEPV     X    X     <     <     X   CEPV       X     X     X     X     X 
DPV      X    X     X     X     X  DPV        X     X     X     X     X 
MKT    X    X     X     X     X      MKT        <     X     X     X     X  
 
Italy       UK 
BMV      <    X     X     <     <    BMV        <     X     <     <     <  
EPV      <    <     <     <     <   EPV        <     <     <     <     <  
CEPV     <    X     X     X     <   CEPV       X     X     X     <     <  
DPV      <    X     X     <     <   DPV        <     <     <     <     < 
MKT    <   <     <     <     <     MKT        <     <     <     <     < 
   
Japan 
BMV      <    <     <     <     <     
EPV      <    <     <     <     <  
CEPV     <    <     <     <     <  
DPV      <    <     <     <     < 
MKT    <   <     <     <     <      
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